Insertion algorithm for inverting the signature of a path

07/19/2019
by   Jiawei Chang, et al.
0

In this article we introduce the insertion method for reconstructing the path from its signature, i.e. inverting the signature of a path. For this purpose, we prove that a converging upper bound exists for the difference between the inserted n-th term and the (n+1)-th term of the normalised signature of a smooth path, and we also show that there exists a constant lower bound for a subsequence of the terms in the normalised signature of a piecewise linear path. We demonstrate our results with numerical examples.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro