Inherent Biases of Recurrent Neural Networks for Phonological Assimilation and Dissimilation

02/23/2017
by   Amanda Doucette, et al.
0

A recurrent neural network model of phonological pattern learning is proposed. The model is a relatively simple neural network with one recurrent layer, and displays biases in learning that mimic observed biases in human learning. Single-feature patterns are learned faster than two-feature patterns, and vowel or consonant-only patterns are learned faster than patterns involving vowels and consonants, mimicking the results of laboratory learning experiments. In non-recurrent models, capturing these biases requires the use of alpha features or some other representation of repeated features, but with a recurrent neural network, these elaborations are not necessary.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro