InfoSSM: Interpretable Unsupervised Learning of Nonparametric State-Space Model for Multi-modal Dynamics

09/19/2018
by   Young-Jin Park, et al.
0

The goal of system identification is to learn about underlying physics dynamics behind the observed time-series data. To model the nonparametric and probabilistic dynamics model, Gaussian process state-space models (GPSSMs) have been widely studied; GPs are not only capable to represent nonlinear dynamics, but estimate the uncertainty of prediction and avoid over-fitting. Traditional GPSSMs, however, are based on Gaussian transition model, thus often have difficulty in describing multi-modal motions. To resolve the challenge, this thesis proposes a model using multiple GPs and extends the GPSSM to information-theoretic framework by introducing a mutual information regularizer helping the model to learn interpretable and disentangled representation of multi-modal transition dynamics model. Experiment results show that the proposed model not only successfully represents the observed system but distinguishes the dynamics mode that governs the given observation sequence.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset