Informative extended Mallows priors in the Bayesian Mallows model

01/30/2019
by   Marta Crispino, et al.
0

The aim of this work is to study the problem of prior elicitation for the Mallows model with Spearman's distance, a popular distance-based model for rankings or permutation data. Previous Bayesian inference for such model has been limited to the use of the uniform prior over the space of permutations. We present a novel strategy to elicit subjective prior beliefs on the location parameter of the model, discussing the interpretation of hyper-parameters and the implication of prior choices for the posterior analysis.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro