Information Energy Ratio of XOR Logic Gate at Mesoscopic Scale
As the size of transistors approaches the mesoscopic scale, existing energy consumption analysis methods exhibit various limits, especially when being applied to describe the non-equilibrium information processing of transistors at ultra-low voltages. The stochastic thermodynamics offers a theoretic tool to analyze the energy consumption of transistor during the non-equilibrium information processing. Based on this theory, an information energy ratio of XOR gate composed of single-electron transistors is proposed at the mesoscopic scale, which can be used to quantify the exchange between the information and energy at XOR gates. Furthermore, the energy efficiency of the parity check circuit is proposed to analyze the energy consumption of digital signal processing systems. Compared with the energy efficiency of parity check circuit adopting the 7 nm semiconductor process supply voltage, simulation results show that the energy efficiency of the parity check circuit is improved by 266 the supply voltage is chosen at a specified value.
READ FULL TEXT