Information Borrowing in Regression Models

01/09/2022
by   Amy Zhang, et al.
0

Model development often takes data structure, subject matter considerations, model assumptions, and goodness of fit into consideration. To diagnose issues with any of these factors, it can be helpful to understand regression model estimates at a more granular level. We propose a new method for decomposing point estimates from a regression model via weights placed on data clusters. The weights are informed only by the model specification and data availability and thus can be used to explicitly link the effects of data imbalance and model assumptions to actual model estimates. The weight matrix has been understood in linear models as the hat matrix in the existing literature. We extend it to Bayesian hierarchical regression models that incorporate prior information and complicated dependence structures through the covariance among random effects. We show that the model weights, which we call borrowing factors, generalize shrinkage and information borrowing to all regression models. In contrast, the focus of the hat matrix has been mainly on the diagonal elements indicating the amount of leverage. We also provide metrics that summarize the borrowing factors and are practically useful. We present the theoretical properties of the borrowing factors and associated metrics and demonstrate their usage in two examples. By explicitly quantifying borrowing and shrinkage, researchers can better incorporate domain knowledge and evaluate model performance and the impacts of data properties such as data imbalance or influential points.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset