DeepAI AI Chat
Log In Sign Up

Information-based Disentangled Representation Learning for Unsupervised MR Harmonization

by   Lianrui Zuo, et al.

Accuracy and consistency are two key factors in computer-assisted magnetic resonance (MR) image analysis. However, contrast variation from site to site caused by lack of standardization in MR acquisition impedes consistent measurements. In recent years, image harmonization approaches have been proposed to compensate for contrast variation in MR images. Current harmonization approaches either require cross-site traveling subjects for supervised training or heavily rely on site-specific harmonization models to encourage harmonization accuracy. These requirements potentially limit the application of current harmonization methods in large-scale multi-site studies. In this work, we propose an unsupervised MR harmonization framework, CALAMITI (Contrast Anatomy Learning and Analysis for MR Intensity Translation and Integration), based on information bottleneck theory. CALAMITI learns a disentangled latent space using a unified structure for multi-site harmonization without the need for traveling subjects. Our model is also able to adapt itself to harmonize MR images from a new site with fine tuning solely on images from the new site. Both qualitative and quantitative results show that the proposed method achieves superior performance compared with other unsupervised harmonization approaches.


page 3

page 8

page 10

page 11


A latent space for unsupervised MR image quality control via artifact assessment

Image quality control (IQC) can be used in automated magnetic resonance ...

HACA3: A Unified Approach for Multi-site MR Image Harmonization

The lack of standardization is a prominent issue in magnetic resonance (...

Disentangling A Single MR Modality

Disentangling anatomical and contrast information from medical images ha...

Learn to Ignore: Domain Adaptation for Multi-Site MRI Analysis

Limited availability of large image datasets is a major issue in the dev...

ImUnity: a generalizable VAE-GAN solution for multicenter MR image harmonization

ImUnity is an original deep-learning model designed for efficient and fl...

Wafer-level Variation Modeling for Multi-site RF IC Testing via Hierarchical Gaussian Process

Wafer-level performance prediction has been attracting attention to redu...

Computer Aided Detection of Anemia-like Pallor

Paleness or pallor is a manifestation of blood loss or low hemoglobin co...