Infinite Types, Infinite Data, Infinite Interaction
We describe a way to represent computable functions between coinductive types as particular transducers in type theory. This generalizes earlier work on functions between streams by P. Hancock to a much richer class of coinductive types. Those transducers can be defined in dependent type theory without any notion of equality but require inductive-recursive definitions. Most of the properties of these constructions only rely on a mild notion of equality (intensional equality) and can thus be formalized in the dependently typed language Agda.
READ FULL TEXT