Infinite-dimensional Log-Determinant divergences II: Alpha-Beta divergences

10/13/2016
by   Minh Ha Quang, et al.
0

This work presents a parametrized family of divergences, namely Alpha-Beta Log- Determinant (Log-Det) divergences, between positive definite unitized trace class operators on a Hilbert space. This is a generalization of the Alpha-Beta Log-Determinant divergences between symmetric, positive definite matrices to the infinite-dimensional setting. The family of Alpha-Beta Log-Det divergences is highly general and contains many divergences as special cases, including the recently formulated infinite dimensional affine-invariant Riemannian distance and the infinite-dimensional Alpha Log-Det divergences between positive definite unitized trace class operators. In particular, it includes a parametrized family of metrics between positive definite trace class operators, with the affine-invariant Riemannian distance and the square root of the symmetric Stein divergence being special cases. For the Alpha-Beta Log-Det divergences between covariance operators on a Reproducing Kernel Hilbert Space (RKHS), we obtain closed form formulas via the corresponding Gram matrices.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset