Inference with Seperately Specified Sets of Probabilities in Credal Networks

We present new algorithms for inference in credal networks --- directed acyclic graphs associated with sets of probabilities. Credal networks are here interpreted as encoding strong independence relations among variables. We first present a theory of credal networks based on separately specified sets of probabilities. We also show that inference with polytrees is NP-hard in this setting. We then introduce new techniques that reduce the computational effort demanded by inference, particularly in polytrees, by exploring separability of credal sets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset