Inference with Hamiltonian Sequential Monte Carlo Simulators

12/19/2018
by   Remi Daviet, et al.
0

The paper proposes a new Monte-Carlo simulator combining the advantages of Sequential Monte Carlo simulators and Hamiltonian Monte Carlo simulators. The result is a method that is robust to multimodality and complex shapes to use for inference in presence of difficult likelihoods or target functions. Several examples are provided.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro