Inference Graphs for CNN Interpretation

10/20/2021
by   Yael Konforti, et al.
0

Convolutional neural networks (CNNs) have achieved superior accuracy in many visual related tasks. However, the inference process through intermediate layers is opaque, making it difficult to interpret such networks or develop trust in their operation. We propose to model the network hidden layers activity using probabilistic models. The activity patterns in layers of interest are modeled as Gaussian mixture models, and transition probabilities between clusters in consecutive modeled layers are estimated. Based on maximum-likelihood considerations, nodes and paths relevant for network prediction are chosen, connected, and visualized as an inference graph. We show that such graphs are useful for understanding the general inference process of a class, as well as explaining decisions the network makes regarding specific images.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset