Inference for high-dimensional split-plot designs with different dimensions between groups

07/19/2022
by   Paavo Sattler, et al.
0

In repeated Measure Designs with multiple groups, the primary purpose is to compare different groups in various aspects. For several reasons, the number of measurements and therefore the dimension of the observation vectors can depend on the group, making the usage of existing approaches impossible. We develop an approach which can be used not only for a possibly increasing number of groups a, but also for group-depending dimension d_i, which is allowed to go to infinity. This is a unique high-dimensional asymptotic framework impressing through its variety and do without usual conditions on the relation between sample size and dimension. It especially includes settings with fixed dimensions in some groups and increasing dimensions in other ones, which can be seen as semi-high-dimensional. To find a appropriate statistic test new and innovative estimators are developed, which can be used under these diverse settings on a,d_i and n_i without any adjustments. We investigated the asymptotic distribution of a quadratic-form-based test statistic and developed an asymptotic correct test. Finally, an extensive simulation study is conducted to investigate the role of the single group's dimension.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset