Inductive Semi-supervised Learning Through Optimal Transport

12/14/2021
by   Mourad El Hamri, et al.
0

In this paper, we tackle the inductive semi-supervised learning problem that aims to obtain label predictions for out-of-sample data. The proposed approach, called Optimal Transport Induction (OTI), extends efficiently an optimal transport based transductive algorithm (OTP) to inductive tasks for both binary and multi-class settings. A series of experiments are conducted on several datasets in order to compare the proposed approach with state-of-the-art methods. Experiments demonstrate the effectiveness of our approach. We make our code publicly available (Code is available at: https://github.com/MouradElHamri/OTI).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset