Inductive learning for product assortment graph completion

10/04/2021
by   Haris Dukic, et al.
0

Global retailers have assortments that contain hundreds of thousands of products that can be linked by several types of relationships like style compatibility, "bought together", "watched together", etc. Graphs are a natural representation for assortments, where products are nodes and relations are edges. Relations like style compatibility are often produced by a manual process and therefore do not cover uniformly the whole graph. We propose to use inductive learning to enhance a graph encoding style compatibility of a fashion assortment, leveraging rich node information comprising textual descriptions and visual data. Then, we show how the proposed graph enhancement improves substantially the performance on transductive tasks with a minor impact on graph sparsity.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro