Individual Treatment Effect Estimation Through Controlled Neural Network Training in Two Stages

01/21/2022
by   Naveen Nair, et al.
0

We develop a Causal-Deep Neural Network (CDNN) model trained in two stages to infer causal impact estimates at an individual unit level. Using only the pre-treatment features in stage 1 in the absence of any treatment information, we learn an encoding for the covariates that best represents the outcome. In the 2^nd stage we further seek to predict the unexplained outcome from stage 1, by introducing the treatment indicator variables alongside the encoded covariates. We prove that even without explicitly computing the treatment residual, our method still satisfies the desirable local Neyman orthogonality, making it robust to small perturbations in the nuisance parameters. Furthermore, by establishing connections with the representation learning approaches, we create a framework from which multiple variants of our algorithm can be derived. We perform initial experiments on the publicly available data sets to compare these variants and get guidance in selecting the best variant of our CDNN method. On evaluating CDNN against the state-of-the-art approaches on three benchmarking datasets, we observe that CDNN is highly competitive and often yields the most accurate individual treatment effect estimates. We highlight the strong merits of CDNN in terms of its extensibility to multiple use cases.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset