Indexed type theories

06/21/2018 ∙ by Valery Isaev, et al. ∙ 0

In this paper, we define indexed type theories which are related to indexed (∞-)categories in the same way as (homotopy) type theories are related to (∞-)categories. We define several standard constructions for such theories including finite (co)limits, arbitrary (co)products, exponents, object classifiers, and orthogonal factorization systems. We also prove that these constructions are equivalent to their type theoretic counterparts such as Σ-types, unit types, identity types, finite higher inductive types, Π-types, univalent universes, and higher modalities.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.