Index Selection for NoSQL Database with Deep Reinforcement Learning

06/16/2020 ∙ by Shun Yao, et al. ∙ 0

We propose a new approach of NoSQL database index selection. For different workloads, we select different indexes and their different parameters to optimize the database performance. The approach builds a deep reinforcement learning model to select an optimal index for a given fixed workload and adapts to a changing workload. Experimental results show that, Deep Reinforcement Learning Index Selection Approach (DRLISA) has improved performance to varying degrees according to traditional single index structures.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.