Indecision Trees: Learning Argument-Based Reasoning under Quantified Uncertainty

06/23/2022
by   Jonathan S. Kent, et al.
0

Using Machine Learning systems in the real world can often be problematic, with inexplicable black-box models, the assumed certainty of imperfect measurements, or providing a single classification instead of a probability distribution. This paper introduces Indecision Trees, a modification to Decision Trees which learn under uncertainty, can perform inference under uncertainty, provide a robust distribution over the possible labels, and can be disassembled into a set of logical arguments for use in other reasoning systems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro