Incremental Pruning: A Simple, Fast, Exact Method for Partially Observable Markov Decision Processes

02/06/2013
by   Anthony R. Cassandra, et al.
0

Most exact algorithms for general partially observable Markov decision processes (POMDPs) use a form of dynamic programming in which a piecewise-linear and convex representation of one value function is transformed into another. We examine variations of the "incremental pruning" method for solving this problem and compare them to earlier algorithms from theoretical and empirical perspectives. We find that incremental pruning is presently the most efficient exact method for solving POMDPs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset