Incremental Cluster Validity Indices for Hard Partitions: Extensions and Comparative Study

Validation is one of the most important aspects of clustering, but most approaches have been batch methods. Recently, interest has grown in providing incremental alternatives. This paper extends the incremental cluster validity index (iCVI) family to include incremental versions of Calinski-Harabasz (iCH), I index and Pakhira-Bandyopadhyay-Maulik (iI and iPBM), Silhouette (iSIL), Negentropy Increment (iNI), Representative Cross Information Potential (irCIP) and Representative Cross Entropy (irH), and Conn_Index (iConn_Index). Additionally, the effect of under- and over-partitioning on the behavior of these six iCVIs, the Partition Separation (PS) index, as well as two other recently developed iCVIs (incremental Xie-Beni (iXB) and incremental Davies-Bouldin (iDB)) was examined through a comparative study. Experimental results using fuzzy adaptive resonance theory (ART)-based clustering methods showed that while evidence of most under-partitioning cases could be inferred from the behaviors of all these iCVIs, over-partitioning was found to be a more challenging scenario indicated only by the iConn_Index. The expansion of incremental validity indices provides significant novel opportunities for assessing and interpreting the results of unsupervised learning.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro