Increasing Adversarial Uncertainty to Scale Private Similarity Testing

09/03/2021
by   Yiqing Hua, et al.
0

Social media and other platforms rely on automated detection of abusive content to help combat disinformation, harassment, and abuse. One common approach is to check user content for similarity against a server-side database of problematic items. However, this method fundamentally endangers user privacy. Instead, we target client-side detection, notifying only the users when such matches occur to warn them against abusive content. Our solution is based on privacy-preserving similarity testing. Existing approaches rely on expensive cryptographic protocols that do not scale well to large databases and may sacrifice the correctness of the matching. To contend with this challenge, we propose and formalize the concept of similarity-based bucketization(SBB). With SBB, a client reveals a small amount of information to a database-holding server so that it can generate a bucket of potentially similar items. The bucket is small enough for efficient application of privacy-preserving protocols for similarity. To analyze the privacy risk of the revealed information, we introduce a framework for measuring an adversary's ability to infer a predicate about the client input with good confidence. We develop a practical SBB protocol for image content, and evaluate its client privacy guarantee with real-world social media data. We then combine SBB with various similarity protocols, showing that SBB provides a speedup of at least 29x on large-scale databases, while retaining correctness of over 95

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset