Incomplete Multi-view Clustering via Diffusion Completion
Incomplete multi-view clustering is a challenging and non-trivial task to provide effective data analysis for large amounts of unlabeled data in the real world. All incomplete multi-view clustering methods need to address the problem of how to reduce the impact of missing views. To address this issue, we propose diffusion completion to recover the missing views integrated into an incomplete multi-view clustering framework. Based on the observable views information, the diffusion model is used to recover the missing views, and then the consistency information of the multi-view data is learned by contrastive learning to improve the performance of multi-view clustering. To the best of our knowledge, this may be the first work to incorporate diffusion models into an incomplete multi-view clustering framework. Experimental results show that the proposed method performs well in recovering the missing views while achieving superior clustering performance compared to state-of-the-art methods.
READ FULL TEXT