In-Place Gestures Classification via Long-term Memory Augmented Network

09/02/2022
by   Lizhi Zhao, et al.
0

In-place gesture-based virtual locomotion techniques enable users to control their viewpoint and intuitively move in the 3D virtual environment. A key research problem is to accurately and quickly recognize in-place gestures, since they can trigger specific movements of virtual viewpoints and enhance user experience. However, to achieve real-time experience, only short-term sensor sequence data (up to about 300ms, 6 to 10 frames) can be taken as input, which actually affects the classification performance due to limited spatio-temporal information. In this paper, we propose a novel long-term memory augmented network for in-place gestures classification. It takes as input both short-term gesture sequence samples and their corresponding long-term sequence samples that provide extra relevant spatio-temporal information in the training phase. We store long-term sequence features with an external memory queue. In addition, we design a memory augmented loss to help cluster features of the same class and push apart features from different classes, thus enabling our memory queue to memorize more relevant long-term sequence features. In the inference phase, we input only short-term sequence samples to recall the stored features accordingly, and fuse them together to predict the gesture class. We create a large-scale in-place gestures dataset from 25 participants with 11 gestures. Our method achieves a promising accuracy of 95.1 192ms, and an accuracy of 97.3 be superior to recent in-place gesture classification techniques. User study also validates our approach. Our source code and dataset will be made available to the community.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset