In oder Aus

02/19/2019
by   Ethan Madison, et al.
0

Bloom filters are data structures used to determine set membership of elements, with applications from string matching to networking and security problems. These structures are favored because of their reduced memory consumption and fast wallclock and asymptotic time bounds. Generally, Bloom filters maintain constant membership query time, making them very fast in their niche. However, they are limited in their lack of a removal operation, as well as by their probabilistic nature. In this paper, we discuss various iterations of and alternatives to the generic Bloom filter that have been researched and implemented to overcome their inherent limitations. Bloom filters, especially when used in conjunction with other data structures, are still powerful and efficient data structures; we further discuss their use in industy and research to optimize resource utilization.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro