In-network Computation for Large-scale Federated Learning over Wireless Edge Networks
Most conventional Federated Learning (FL) models are using a star network topology where all users aggregate their local models at a single server (e.g., a cloud server). That causes significant overhead in terms of both communications and computing at the server, delaying the training process, especially for large scale FL systems with straggling nodes. This paper proposes a novel edge network architecture that enables decentralizing the model aggregation process at the server, thereby significantly reducing the training delay for the whole FL network. Specifically, we design a highly-effective in-network computation protocol (INC) consisting of a user scheduling mechanism, an in-network aggregation process (INA) which is designed for both primal- and primal-dual methods in distributed machine learning problems, and a network routing algorithm. Under the proposed INA, we then formulate a joint routing and resource optimization problem, aiming to minimize the aggregation latency. The problem is NP-hard, and thus we propose a polynomial time routing algorithm which can achieve near optimal performance with a theoretical bound. Simulation results showed that the proposed INC framework can not only help reduce the FL training latency, up to 5.6 times, but also significantly decrease cloud's traffic and computing overhead. This can enable large-scale FL.
READ FULL TEXT