In-Loop Meta-Learning with Gradient-Alignment Reward

02/05/2021
by   Samuel Müller, et al.
0

At the heart of the standard deep learning training loop is a greedy gradient step minimizing a given loss. We propose to add a second step to maximize training generalization. To do this, we optimize the loss of the next training step. While computing the gradient for this generally is very expensive and many interesting applications consider non-differentiable parameters (e.g. due to hard samples), we present a cheap-to-compute and memory-saving reward, the gradient-alignment reward (GAR), that can guide the optimization. We use this reward to optimize multiple distributions during model training. First, we present the application of GAR to choosing the data distribution as a mixture of multiple dataset splits in a small scale setting. Second, we show that it can successfully guide learning augmentation strategies competitive with state-of-the-art augmentation strategies on CIFAR-10 and CIFAR-100.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset