Improving Vision-based Self-positioning in Intelligent Transportation Systems via Integrated Lane and Vehicle Detection

04/05/2017
by   Parag S. Chandakkar, et al.
0

Traffic congestion is a widespread problem. Dynamic traffic routing systems and congestion pricing are getting importance in recent research. Lane prediction and vehicle density estimation is an important component of such systems. We introduce a novel problem of vehicle self-positioning which involves predicting the number of lanes on the road and vehicle's position in those lanes using videos captured by a dashboard camera. We propose an integrated closed-loop approach where we use the presence of vehicles to aid the task of self-positioning and vice-versa. To incorporate multiple factors and high-level semantic knowledge into the solution, we formulate this problem as a Bayesian framework. In the framework, the number of lanes, the vehicle's position in those lanes and the presence of other vehicles are considered as parameters. We also propose a bounding box selection scheme to reduce the number of false detections and increase the computational efficiency. We show that the number of box proposals decreases by a factor of 6 using the selection approach. It also results in large reduction in the number of false detections. The entire approach is tested on real-world videos and is found to give acceptable results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro