Improving the Robustness of Reinforcement Learning Policies with ℒ_1 Adaptive Control

12/03/2021
by   Y. Cheng, et al.
0

A reinforcement learning (RL) control policy trained in a nominal environment could fail in a new/perturbed environment due to the existence of dynamic variations. For controlling systems with continuous state and action spaces, we propose an add-on approach to robustifying a pre-trained RLpolicy by augmenting it with an ℒ_1 adaptive controller (ℒ_1AC). Leveraging the capability of an ℒ_1AC for fast estimation and active compensation of dynamic variations, the proposed approach can improve the robustness of an RL policy which is trained either in a simulator or in the real world without consideration of a broad class of dynamic variations. Numerical and real-world experiments empirically demonstrate the efficacy of the proposed approach in robustifying RL policies trained using both model-free and model-based methods. A video for the experiments on a real Pendubot setup is availableathttps://youtu.be/xgOB9vpyUgE.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro