Improving the diagnosis of breast cancer based on biophysical ultrasound features utilizing machine learning

07/13/2022
by   Jihye Baek, et al.
9

The improved diagnostic accuracy of ultrasound breast examinations remains an important goal. In this study, we propose a biophysical feature based machine learning method for breast cancer detection to improve the performance beyond a benchmark deep learning algorithm and to furthermore provide a color overlay visual map of the probability of malignancy within a lesion. This overall framework is termed disease specific imaging. Previously, 150 breast lesions were segmented and classified utilizing a modified fully convolutional network and a modified GoogLeNet, respectively. In this study multiparametric analysis was performed within the contoured lesions. Features were extracted from ultrasound radiofrequency, envelope, and log compressed data based on biophysical and morphological models. The support vector machine with a Gaussian kernel constructed a nonlinear hyperplane, and we calculated the distance between the hyperplane and data point of each feature in multiparametric space. The distance can quantitatively assess a lesion, and suggest the probability of malignancy that is color coded and overlaid onto B mode images. Training and evaluation were performed on in vivo patient data. The overall accuracy for the most common types and sizes of breast lesions in our study exceeded 98.0 receiver operating characteristic curve, which is more precise than the performance of radiologists and a deep learning system. Further, the correlation between the probability and BI RADS enables a quantitative guideline to predict breast cancer. Therefore, we anticipate that the proposed framework can help radiologists achieve more accurate and convenient breast cancer classification and detection.

READ FULL TEXT

page 15

page 16

page 18

page 20

page 30

research
06/06/2017

Added value of morphological features to breast lesion diagnosis in ultrasound

Ultrasound imaging plays an important role in breast lesion differentiat...
research
05/06/2019

Automated Segmentation of Lesions in Ultrasound Using Semi-pixel-wise Cycle Generative Adversarial Nets

Breast cancer is the most common invasive cancer with the highest cancer...
research
12/20/2017

Detection and classification of masses in mammographic images in a multi-kernel approach

According to the World Health Organization, breast cancer is the main ca...
research
08/22/2023

A Preliminary Investigation into Search and Matching for Tumour Discrimination in WHO Breast Taxonomy Using Deep Networks

Breast cancer is one of the most common cancers affecting women worldwid...
research
11/15/2021

Dual-energy three-compartment breast imaging for compositional biomarkers to improve detection of malignant lesions

Background While breast imaging such as full-field digital mammography a...
research
02/22/2019

Discriminative Pattern Mining for Breast Cancer Histopathology Image Classification via Fully Convolutional Autoencoder

Accurate diagnosis of breast cancer in histopathology images is challeng...

Please sign up or login with your details

Forgot password? Click here to reset