Improving the Accuracy Of MEPDG Climate Modeling Using Radial Basis Function

02/15/2021
by   Amirehsan Ghasemi, et al.
11

In this paper, the accuracy of two mesh-free approximation approaches, the Gravity model and Radial Basis Function, are compared. The two schemes' convergence behaviors prove that RBF is faster and more accurate than the Gravity model. As a case study, the interpolation of temperature at different locations in Tennesse, USA, are compared. Delaunay mesh generation is used to create random points inside and on the border, which data can be incorporated in these locations. 49 MERRA weather stations as used as data sources to provide the temperature at a specific day and hour. The contours of interpolated temperatures provided in the result section assert RBF is a more accurate method than the Gravity model by showing a smoother and broader range of interpolated data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro