Improving the accuracy of discretisations of the vector transport equation on the lowest-order quadrilateral Raviart-Thomas finite elements

07/07/2022
by   Thomas M. Bendall, et al.
0

Within finite element models of fluids, vector-valued fields such as velocity or momentum variables are commonly discretised using the Raviart-Thomas elements. However, when using the lowest-order quadrilateral Raviart-Thomas elements, standard finite element discretisations of the vector transport equation typically have a low order of spatial accuracy. This paper describes two schemes that improve the accuracy of transporting such vector-valued fields on two-dimensional curved manifolds. The first scheme that is presented reconstructs the transported field in a higher-order function space, where the transport equation is then solved. The second scheme applies a mixed finite element formulation to the vector transport equation, simultaneously solving for the transported field and its vorticity. An approach to stabilising this mixed vector-vorticity formulation is presented that uses a Streamline Upwind Petrov-Galerkin (SUPG) method. These schemes are then demonstrated, along with their accuracy properties, through some numerical tests. Two new test cases are used to assess the transport of vector-valued fields on curved manifolds, solving the vector transport equation in isolation. The improvement of the schemes is also shown through two standard test cases for rotating shallow-water models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset