Improving Makeup Face Verification by Exploring Part-Based Representations

01/18/2021
by   Marcus de Assis Angeloni, et al.
0

Recently, we have seen an increase in the global facial recognition market size. Despite significant advances in face recognition technology with the adoption of convolutional neural networks, there are still open challenges, as when there is makeup in the face. To address this challenge, we propose and evaluate the adoption of facial parts to fuse with current holistic representations. We propose two strategies of facial parts: one with four regions (left periocular, right periocular, nose and mouth) and another with three facial thirds (upper, middle and lower). Experimental results obtained in four public makeup face datasets and in a challenging cross-dataset protocol show that the fusion of deep features extracted of facial parts with holistic representation increases the accuracy of face verification systems and decreases the error rates, even without any retraining of the CNN models. Our proposed pipeline achieved state-of-the-art performance for the YMU dataset and competitive results for other three datasets (EMFD, FAM and M501).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset