Improving Latent User Models in Online Social Media

11/30/2017
by   Adit Krishnan, et al.
0

Modern social platforms are characterized by the presence of rich user-behavior data associated with the publication, sharing and consumption of textual content. Users interact with content and with each other in a complex and dynamic social environment while simultaneously evolving over time. In order to effectively characterize users and predict their future behavior in such a setting, it is necessary to overcome several challenges. Content heterogeneity and temporal inconsistency of behavior data result in severe sparsity at the user level. In this paper, we propose a novel mutual-enhancement framework to simultaneously partition and learn latent activity profiles of users. We propose a flexible user partitioning approach to effectively discover rare behaviors and tackle user-level sparsity. We extensively evaluate the proposed framework on massive datasets from real-world platforms including Q&A networks and interactive online courses (MOOCs). Our results indicate significant gains over state-of-the-art behavior models ( 15 avg ) in a varied range of tasks and our gains are further magnified for users with limited interaction data. The proposed algorithms are amenable to parallelization, scale linearly in the size of datasets, and provide flexibility to model diverse facets of user behavior.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset