Improving Inference for Neural Image Compression

06/07/2020
by   Yibo Yang, et al.
19

We consider the problem of lossy image compression with deep latent variable models. State-of-the-art methods build on hierarchical variational autoencoders (VAEs) and learn inference networks to predict a compressible latent representation of each data point. Drawing on the variational inference perspective on compression, we identify three approximation gaps which limit performance in the conventional approach: (i) an amortization gap, (ii) a discretization gap, and (iii) a marginalization gap. We propose improvements to each of these three shortcomings based on iterative inference, stochastic annealing for discrete optimization, and bits-back coding, resulting in the first application of bits-back coding to lossy compression. In our experiments, which include extensive baseline comparisons and ablation studies, we achieve new state-of-the-art performance on lossy image compression using an established VAE architecture, by changing only the inference method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset