Improving GNSS Positioning using Neural Network-based Corrections

10/18/2021
by   Ashwin V. Kanhere, et al.
0

Deep Neural Networks (DNNs) are a promising tool for Global Navigation Satellite System (GNSS) positioning in the presence of multipath and non-line-of-sight errors, owing to their ability to model complex errors using data. However, developing a DNN for GNSS positioning presents various challenges, such as 1) poor numerical conditioning caused by large variations in measurements and position values across the globe, 2) varying number and order within the set of measurements due to changing satellite visibility, and 3) overfitting to available data. In this work, we address the aforementioned challenges and propose an approach for GNSS positioning by applying DNN-based corrections to an initial position guess. Our DNN learns to output the position correction using the set of pseudorange residuals and satellite line-of-sight vectors as inputs. The limited variation in these input and output values improves the numerical conditioning for our DNN. We design our DNN architecture to combine information from the available GNSS measurements, which vary both in number and order, by leveraging recent advancements in set-based deep learning methods. Furthermore, we present a data augmentation strategy for reducing overfitting in the DNN by randomizing the initial position guesses. We first perform simulations and show an improvement in the initial positioning error when our DNN-based corrections are applied. After this, we demonstrate that our approach outperforms a WLS baseline on real-world data. Our implementation is available at github.com/Stanford-NavLab/deep_gnss.

READ FULL TEXT
research
10/28/2021

Feature Learning for Neural-Network-Based Positioning with Channel State Information

Recent channel state information (CSI)-based positioning pipelines rely ...
research
01/05/2020

Position Dilution of Precision and Bayesian Model of the Observation Error

The expected position error in many cases is far from feasible to be est...
research
01/05/2020

Position Dilution of Precision: a Bayesian point of view

The expected position error in many cases is far from feasible to be est...
research
04/15/2020

Performance Analysis for Autonomous Vehicle 5G-Assisted Positioning in GNSS-Challenged Environments

Standalone Global Navigation Satellite Systems (GNSS) are known to provi...
research
04/06/2021

WhONet: Wheel Odometry Neural Network for Vehicular Localisation in GNSS-Deprived Environments

In this paper, a deep learning approach is proposed to accurately positi...
research
06/08/2023

RNN-Based GNSS Positioning using Satellite Measurement Features and Pseudorange Residuals

In the Global Navigation Satellite System (GNSS) context, the growing nu...
research
01/23/2023

Efficient Training Under Limited Resources

Training time budget and size of the dataset are among the factors affec...

Please sign up or login with your details

Forgot password? Click here to reset