Improving Crowded Object Detection via Copy-Paste

11/22/2022
by   Jiangfan Deng, et al.
0

Crowdedness caused by overlapping among similar objects is a ubiquitous challenge in the field of 2D visual object detection. In this paper, we first underline two main effects of the crowdedness issue: 1) IoU-confidence correlation disturbances (ICD) and 2) confused de-duplication (CDD). Then we explore a pathway of cracking these nuts from the perspective of data augmentation. Primarily, a particular copy-paste scheme is proposed towards making crowded scenes. Based on this operation, we first design a "consensus learning" method to further resist the ICD problem and then find out the pasting process naturally reveals a pseudo "depth" of object in the scene, which can be potentially used for alleviating CDD dilemma. Both methods are derived from magical using of the copy-pasting without extra cost for hand-labeling. Experiments show that our approach can easily improve the state-of-the-art detector in typical crowded detection task by more than 2 without any bells and whistles. Moreover, this work can outperform existing data augmentation strategies in crowded scenario.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset