Improving Consequential Decision Making under Imperfect Predictions

02/08/2019
by   Niki Kilbertus, et al.
6

Consequential decisions are increasingly informed by sophisticated data-driven predictive models. For accurate predictive models, deterministic threshold rules have been shown to be optimal in terms of utility, even under a variety of fairness constraints. However, consistently learning accurate models requires access to ground truth data. Unfortunately, in practice, some data can only be observed if a certain decision was taken. Thus, collected data always depends on potentially imperfect historical decision policies. As a result, learned deterministic threshold rules are often suboptimal. We address the above question from the perspective of sequential policy learning. We first show that, if decisions are taken by a faulty deterministic policy, the observed outcomes under this policy are insufficient to improve it. We then describe how this undesirable behavior can be avoided using stochastic policies. Finally, we introduce a practical gradient-based algorithm to learn stochastic policies that effectively leverage the outcomes of decisions to improve over time. Experiments on both synthetic and real-world data illustrate our theoretical results and show the efficacy of our proposed algorithm.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset