Improved spectral convergence rates for graph Laplacians on epsilon-graphs and k-NN graphs

10/29/2019 ∙ by Jeff Calder, et al. ∙ 0

In this paper we improve the spectral convergence rates for graph-based approximations of Laplace-Beltrami operators constructed from random data. We utilize regularity of the continuum eigenfunctions and strong pointwise consistency results to prove that spectral convergence rates are the same as the pointwise consistency rates for graph Laplacians. In particular, for an optimal choice of the graph connectivity ε, our results show that the eigenvalues and eigenvectors of the graph Laplacian converge to those of the Laplace-Beltrami operator at a rate of O(n^-1/(m+4)), up to log factors, where m is the manifold dimension and n is the number of vertices in the graph. Our approach is general and allows us to analyze a large variety of graph constructions that include ε-graphs and k-NN graphs.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.