Improved Network Calculus Delay Bounds in Time-Sensitive Networks

04/22/2022
by   Ehsan Mohammadpour, et al.
0

In time-sensitive networks, bounds on worst-case delays are typically obtained by using network calculus and assuming that flows are constrained by bit-level arrival curves. However, in IEEE TSN or IETF DetNet, source flows are constrained on the number of packets rather than bits. A common approach to obtain a delay bound is to derive a bit-level arrival curve from a packet-level arrival curve. However, such a method is not tight: we show that better bounds can be obtained by directly exploiting the arrival curves expressed at the packet level. Our analysis method also obtains better bounds when flows are constrained with g-regulation, such as the recently proposed Length-Rate Quotient rule. It can also be used to generalize some recently proposed network-calculus delay-bounds for a service curve element with known transmission rate.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro