Improved Job sequencing Bounds from Decision Diagrams
We introduce a general method for relaxing decision diagrams that allows one to bound job sequencing problems by solving a Lagrangian dual problem on a relaxed diagram. We also provide guidelines for identifying problems for which this approach can result in useful bounds. These same guidelines can be applied to bounding deterministic dynamic programming problems in general, since decision diagrams rely on DP formulations. Computational tests show that relaxation on a decision diagram can yield very tight bounds for certain classes of hard job sequencing problems. For example, it proves for the first time that the best known solutions for Biskup-Feldman instances are within a small fraction of 1
READ FULL TEXT