Improved histogram-based anomaly detector with the extended principal component features

09/27/2019
by   Sunil Aryal, et al.
0

In this era of big data, databases are growing rapidly in terms of the number of records. Fast automatic detection of anomalous records in these massive databases is a challenging task. Traditional distance based anomaly detectors are not applicable in these massive datasets. Recently, a simple but extremely fast anomaly detector using one-dimensional histograms has been introduced. The anomaly score of a data instance is computed as the product of the probability mass of histograms in each dimensions where it falls into. It is shown to produce competitive results compared to many state-of-the-art methods in many datasets. Because it assumes data features are independent of each other, it results in poor detection accuracy when there is correlation between features. To address this issue, we propose to increase the feature size by adding more features based on principal components. Our results show that using the original input features together with principal components improves the detection accuracy of histogram-based anomaly detector significantly without compromising much in terms of run-time.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset