Improved dual channel pulse coupled neural network and its application to multi-focus image fusion
This paper presents an improved dual channel pulse coupled neural network (IDC-PCNN) model for image fusion. The model can overcome some defects of standard PCNN model. In this fusion scheme, the multiplication rule is replaced by addition rule in the information fusion pool of dual channel PCNN (DC-PCNN) model. Meanwhile the sum of modified Laplacian (SML) measure is adopted, which is better than other focus measures. This method not only inherits the good characteristics of the standard PCNN model but also enhances the computing efficiency and fusion quality. The performance of the proposed method is evaluated by using four criteria including average cross entropy, root mean square error, peak value signal to noise ratio and structure similarity index. Comparative studies show that the proposed fusion algorithm outperforms the standard PCNN method and the DC-PCNN method.
READ FULL TEXT