DeepAI AI Chat
Log In Sign Up

Improved Calibration of Numerical Integration Error in Sigma-Point Filters

by   Jakub Prüher, et al.

The sigma-point filters, such as the UKF, which exploit numerical quadrature to obtain an additional order of accuracy in the moment transformation step, are popular alternatives to the ubiquitous EKF. The classical quadrature rules used in the sigma-point filters are motivated via polynomial approximation of the integrand, however in the applied context these assumptions cannot always be justified. As a result, quadrature error can introduce bias into estimated moments, for which there is no compensatory mechanism in the classical sigma-point filters. This can lead in turn to estimates and predictions that are poorly calibrated. In this article, we investigate the Bayes-Sard quadrature method in the context of sigma-point filters, which enables uncertainty due to quadrature error to be formalised within a probabilistic model. Our first contribution is to derive the well-known classical quadratures as special cases of the Bayes-Sard quadrature method. Then a general-purpose moment transform is developed and utilised in the design of novel sigma-point filters, so that uncertainty due to quadrature error is explicitly quantified. Numerical experiments on a challenging tracking example with misspecified initial conditions show that the additional uncertainty quantification built into our method leads to better-calibrated state estimates with improved RMSE.


page 1

page 13


A study of uncertainty quantification in overparametrized high-dimensional models

Uncertainty quantification is a central challenge in reliable and trustw...

A Realizable Filtered Intrusive Polynomial Moment Method

Intrusive uncertainty quantification methods for hyperbolic problems exh...

Gaussian Process Quadrature Moment Transform

Computation of moments of transformed random variables is a problem appe...

Moment Multicalibration for Uncertainty Estimation

We show how to achieve the notion of "multicalibration" from Hébert-John...

Calibrated and Enhanced NRLMSIS 2.0 Model with Uncertainty Quantification

The Mass Spectrometer and Incoherent Scatter radar (MSIS) model family h...

The Bayes Lepski's Method and Credible Bands through Volume of Tubular Neighborhoods

For a general class of priors based on random series basis expansion, we...

Self-Calibrating Neural-Probabilistic Model for Authorship Verification Under Covariate Shift

We are addressing two fundamental problems in authorship verification (A...

Code Repositories


Nonlinear Sigma-Point Kalman Filters based on Bayesian Quadrature

view repo