Impossibility of Characterizing Distribution Learning – a simple solution to a long-standing problem
We consider the long-standing question of finding a parameter of a class of probability distributions that characterizes its PAC learnability. We provide a rather surprising answer - no such parameter exists. Our techniques allow us to show similar results for several general notions of characterizing learnability and for several learning tasks. We show that there is no notion of dimension that characterizes the sample complexity of learning distribution classes. We then consider the weaker requirement of only characterizing learnability (rather than the quantitative sample complexity function). We propose some natural requirements for such a characterization and go on to show that there exists no characterization of learnability that satisfies these requirements for classes of distributions. Furthermore, we show that our results hold for various other learning problems. In particular, we show that there is no notion of dimension characterizing (or characterization of learnability) for any of the tasks: classification learning for distribution classes, learning of binary classifications w.r.t. a restricted set of marginal distributions, and learnability of classes of real-valued functions with continuous losses.
READ FULL TEXT