Implicit Optimizer for Diffeomorphic Image Registration

02/25/2022
by   Kun Han, et al.
0

Diffeomorphic image registration is the underlying technology in medical image processing which enables the invertibility and point-to-point correspondence. Recently, numerous learning-based methods utilizing convolutional neural networks (CNNs) have been proposed for registration problems. Compared with the speed boosting, accuracy improvement brought by the complicated CNN-based methods is minor. To tackle this problem, we propose a rapid and accurate Implicit Optimizer for Diffeomorphic Image Registration (IDIR) which utilizes the Deep Implicit Function as the neural velocity field (NVF) whose input is the point coordinate p and output is velocity vector at that point v. To reduce the huge memory consumption brought by NVF for 3D volumes, a sparse sampling is employed to the framework. We evaluate our method on two 3D large-scale MR brain scan datasets, the results show that our proposed method provides faster and better registration results than conventional image registration approaches and outperforms the learning-based methods by a significant margin while maintaining the desired diffeomorphic properties.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro