Implicit Equivariance in Convolutional Networks

11/28/2021
by   Naman Khetan, et al.
14

Convolutional Neural Networks(CNN) are inherently equivariant under translations, however, they do not have an equivalent embedded mechanism to handle other transformations such as rotations and change in scale. Several approaches exist that make CNNs equivariant under other transformation groups by design. Among these, steerable CNNs have been especially effective. However, these approaches require redesigning standard networks with filters mapped from combinations of predefined basis involving complex analytical functions. We experimentally demonstrate that these restrictions in the choice of basis can lead to model weights that are sub-optimal for the primary deep learning task (e.g. classification). Moreover, such hard-baked explicit formulations make it difficult to design composite networks comprising heterogeneous feature groups. To circumvent such issues, we propose Implicitly Equivariant Networks (IEN) which induce equivariance in the different layers of a standard CNN model by optimizing a multi-objective loss function that combines the primary loss with an equivariance loss term. Through experiments with VGG and ResNet models on Rot-MNIST , Rot-TinyImageNet, Scale-MNIST and STL-10 datasets, we show that IEN, even with its simple formulation, performs better than steerable networks. Also, IEN facilitates construction of heterogeneous filter groups allowing reduction in number of channels in CNNs by a factor of over 30 maintaining performance on par with baselines. The efficacy of IEN is further validated on the hard problem of visual object tracking. We show that IEN outperforms the state-of-the-art rotation equivariant tracking method while providing faster inference speed.

READ FULL TEXT

page 3

page 15

page 17

page 18

page 19

page 20

page 21

research
08/22/2016

Local Binary Convolutional Neural Networks

We propose local binary convolution (LBC), an efficient alternative to c...
research
06/10/2019

Scale Steerable Filters for Locally Scale-Invariant Convolutional Neural Networks

Augmenting transformation knowledge onto a convolutional neural network'...
research
07/07/2017

A spatiotemporal model with visual attention for video classification

High level understanding of sequential visual input is important for saf...
research
10/15/2019

Optimizing Convolutional Neural Networks for Embedded Systems by Means of Neuroevolution

Automated design methods for convolutional neural networks (CNNs) have r...
research
11/20/2017

Learning Steerable Filters for Rotation Equivariant CNNs

In many machine learning tasks it is desirable that a model's prediction...
research
11/06/2016

The Shallow End: Empowering Shallower Deep-Convolutional Networks through Auxiliary Outputs

The depth is one of the key factors behind the great success of convolut...

Please sign up or login with your details

Forgot password? Click here to reset