Implicit Coordination of Caches in Small Cell Networks under Unknown Popularity Profiles

04/05/2018
by   Emilio Leonardi, et al.
0

We focus on a dense cellular network, in which a limited-size cache is available at every Base Station (BS). In order to optimize the overall performance of the system in such scenario, where a significant fraction of the users is covered by several BSs, a tight coordination among nearby caches is needed. To this end, this pape introduces a class of simple and fully distributed caching policies, which require neither direct communication among BSs, nor a priori knowledge of content popularity. Furthermore, we propose a novel approximate analytical methodology to assess the performance of interacting caches under such policies. Our approach builds upon the well known characteristic time approximation and provides predictions that are surprisingly accurate (hardly distinguishable from the simulations) in most of the scenarios. Both synthetic and trace-driven results show that the our caching policies achieve excellent performance (in some cases provably optimal). They outperform state-of-the-art dynamic policies for interacting caches, and, in some cases, also the greedy content placement, which is known to be the best performing polynomial algorithm under static and perfectly-known content popularity profiles.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset