Impact of Redundancy on Resilience in Distributed Optimization and Learning

11/16/2022
by   Shuo Liu, et al.
0

This report considers the problem of resilient distributed optimization and stochastic learning in a server-based architecture. The system comprises a server and multiple agents, where each agent has its own local cost function. The agents collaborate with the server to find a minimum of the aggregate of the local cost functions. In the context of stochastic learning, the local cost of an agent is the loss function computed over the data at that agent. In this report, we consider this problem in a system wherein some of the agents may be Byzantine faulty and some of the agents may be slow (also called stragglers). In this setting, we investigate the conditions under which it is possible to obtain an "approximate" solution to the above problem. In particular, we introduce the notion of (f, r; ϵ)-resilience to characterize how well the true solution is approximated in the presence of up to f Byzantine faulty agents, and up to r slow agents (or stragglers) – smaller ϵ represents a better approximation. We also introduce a measure named (f, r; ϵ)-redundancy to characterize the redundancy in the cost functions of the agents. Greater redundancy allows for a better approximation when solving the problem of aggregate cost minimization. In this report, we constructively show (both theoretically and empirically) that (f, r; 𝒪(ϵ))-resilience can indeed be achieved in practice, given that the local cost functions are sufficiently redundant.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
10/21/2021

Utilizing Redundancy in Cost Functions for Resilience in Distributed Optimization and Learning

This paper considers the problem of resilient distributed optimization a...
research
03/21/2020

Resilience in Collaborative Optimization: Redundant and Independent Cost Functions

This report considers the problem of Byzantine fault-tolerance in multi-...
research
06/07/2021

Asynchronous Distributed Optimization with Redundancy in Cost Functions

This paper considers the problem of asynchronous distributed multi-agent...
research
01/22/2021

Approximate Byzantine Fault-Tolerance in Distributed Optimization

We consider the problem of Byzantine fault-tolerance in distributed mult...
research
02/20/2021

Stability and Resilience of Distributed Information Spreading in Aggregate Computing

Spreading information through a network of devices is a core activity fo...
research
01/28/2021

Byzantine Fault-Tolerance in Peer-to-Peer Distributed Gradient-Descent

We consider the problem of Byzantine fault-tolerance in the peer-to-peer...
research
10/25/2020

Byzantine Resilient Distributed Multi-Task Learning

Distributed multi-task learning provides significant advantages in multi...

Please sign up or login with your details

Forgot password? Click here to reset