IML-ViT: Image Manipulation Localization by Vision Transformer
Advanced image tampering techniques are increasingly challenging the trustworthiness of multimedia, leading to the development of Image Manipulation Localization (IML). But what makes a good IML model? The answer lies in the way to capture artifacts. Exploiting artifacts requires the model to extract non-semantic discrepancies between the manipulated and authentic regions, which needs to compare differences between these two areas explicitly. With the self-attention mechanism, naturally, the Transformer is the best candidate. Besides, artifacts are sensitive to image resolution, amplified under multi-scale features, and massive at the manipulation border. Therefore, we formulate the answer to the former question as building a ViT with high-resolution capacity, multi-scale feature extraction capability, and manipulation edge supervision. We term this simple but effective ViT paradigm as the IML-ViT, which has great potential to become a new benchmark for IML. Extensive experiments on five benchmark datasets verified our model outperforms the state-of-the-art manipulation localization methods. Code and models are available at <https://github.com/SunnyHaze/IML-ViT>
READ FULL TEXT